갤러리 이슈박스, 최근방문 갤러리
연관 갤러리
2020 도쿄 올림픽 갤러리 타 갤러리(0)
이 갤러리가 연관 갤러리로 추가한 갤러리
추가한 갤러리가 없습니다.
0/0
타 갤러리 2020 도쿄 올림픽 갤러리(0)
이 갤러리를 연관 갤러리로 추가한 갤러리
0/0
개념글 리스트
1/3
- 염경엽의 새벽훈련 vs 박종훈의 새벽훈련 차이 비교 ㅋㅋ ㅇㅇ
- 러시아식 애교 ㅇㅇ
- 병신병신 여초 일제강점기 독립운동 뇌내망상이 얼탱없는 이유 짱깨헌터
- 차도에 맥주병 던진 여자때문에 사망한 50대 남성 ㅇㅇ
- 요즘 10대 우울증이 심각하다고 한다 무갤러
- 산지직송 홈마카세 13(씹스압) - 1 금태충
- (4)오키나와를 여행하는 핑프를 위한 안내서 평범씨
- 누런 가래 뱉지말고 삼키는 게 좋은 이유 ㅇㅇ
- ■ 뮌헨 현지팬들 김민재를 향한 충격적인 민심...JPG ㅇㅇ
- 의외로 산리오 한국 인기 투표 1위인 캐릭터의 떡상 이유 ㅇㅇ
- 김문수 "청년고용,SMR 최우선아젠다..이번 모수개혁은 개악" 포만한
- 포방터 상인들을 악마로 만들었던 골목식당.jpg ㅇㅇ
- 싱글벙글 대통령 자녀들....보인다 보여.....JPG ㅇㅇ
- 펌) 똥싸고 ㄸㄸㅇ 해놓고 도망간 배달기사 ㅇㅇ
- 한국 출생률 난리에 대한 전문가의 충격적인 말 ㅇㅇ
후티어 전술이야기
허리케인 포격 Georg Bruchmüller 게오르그 브루흐뮐러 독일 제국 포병의 스페셜리스트 게오르그 브루흐뮐러 대령이 창시한 전술로 기존의 포격 방식과는 달랐다. 기존의 포격 방식은 공격 개시 며칠 전부터 압도적인 화력을 동원하여 쉴새없이 포격을 퍼부어 주로 적의 참호와 철조망 등 방어 진지를 최대한 파괴하는 것을 목표로 삼았다면 허리케인 포격은 달랐다. 공격 개시 5시간 이내에 집중적으로 준비 포격을 실시하는 것이다. 기존의 포격방식은 장기간의 준비 포격으로 자신의 공격 의도를 적에게 노출시켜 기습을 불가능하게 하였고, 무인 지대를 포탄 구덩이로 뒤덮어서 보병의 신속한 공격의 발목을 잡았기에 허리케인 포격은 짧고 굵게 포격하는 것이다. 게다가 타격부위도 통신선, 지휘본부,병력 집결지 등을 타격했다. 또한 포탄도 고폭탄, 연막탄, 화학탄등 다양한 탄을 섞어 사용하여 적의 후방을 집중 포격하여 적 진지를 대혼란에 빠뜨려 적의 저항 의지를 꺾는다. 즉 적이 정신을 못차리게 만드는것이다. 그리고 허리케인 포격으로 적이 혼란스러운 틈을 타 스톰트루퍼를 투입시킨다. 스톰트루퍼 돌격대는 기존에도 있었던 부대였다. 하지만 이들을 창설한 칼조브는 이 부대를 지휘하지도 못하고 이들은 원래 임무와는 다르게 일반병들과 같이 대프랑스 전선에 배치되어 협상군의 맹공에 절반의 가까운 병력이 별 활약도 없이 증발해버리고 만다. Willy Rohr 빌리 로어 대위 하지만 빌리 로어 대위에 의해 스톰트루퍼는 다시 부활하게 된다. 이 빌리 로어 대위의 말을 들어보면 스톰트루퍼의 목표를 알 수 있는데 "화력과 속도로 적을 제압한다." 그렇다 스톰트루퍼 즉 돌격대는 그 탄생부터 전선돌파라는 숙명을 가지고 태어난 것이다. 빌리 로어 대위는 일반 부대에서 능력있는 병사들(베테랑병사, 정예병사들)을 차출 후, 선발 선발된 병사들은 고강도의 체력 훈련을 받으며 마침내 새로운 돌격대 스톰트루퍼가 탄생하였다. 후티어 전술 Oskar Emil von Hutier 오스카 에밀 폰 후티어 독일의 장군 후티어는 이러한 허리케인 포격 전술과 돌격대 전술을 합치고 보완하여 이른바 후티어 전술을 만들었다. 그럼 후티어 전술의 전개를 보자 허리케인 포격으로 적을 혼란스럽게 만든다. 돌격대에는 보다 큰 재량권을 주어서 인접 부대와의 엄호 하에(이동탄막사격 등등) 은폐·엄폐물을 이용하여 적진으로 접근한 다음, 적의 방어 태세를 살펴서 강한 지점은 우회하고 약한 지점을 골라서 공격한다. 그리고 야포의 사거리를 넘어서 적 전선에 다다르면 이때부터 돌격대의 진가를 볼 수 있다. 앞서서 말한 빌리 로어는 "화력과 속도로 적을 제압한다" 라는 말에서 알 수 있듯이 돌격대에 당시 보병부대에서 보기힘든 화력을 주었는데, 대위가 지휘하는 돌격대대 인원 850명에게는 경기관총 24정, 중박격포 8문, 경박격포 8문, 화염방사기 8정, 경포 4문 외에도 다수의 중기관총과 기관단총, 총류탄등 다양하고 강력한 화기를 운용하였다. 그래서 돌격대들은 이러한 화력을 가지고 전선을 휘집어 놓고 다녔다. 그들은 전선을 공격하면서 끊임없이 전진, 또 전진해야 했고, 보급이나 증원을 위하여 멈춰서는 것은 용납되지 않았다. 그야말로 체력이 완전히 바닥나서 더 이상 움직일 수 없게 되었을 때에야, 그들 앞으로 새로운 부대가 임무 교대하여 진격 속도를 계속 유지하였던 것이다. 즉 기습의 효과를 최대한 이용하면서 강력한 화력으로 적의 방어선을 돌파하고 신속하게 후방으로 침투하여 적을 혼란시키고 사기를 떨어뜨려서 궤멸시킨다는 것이다. 전격전의 3대 요소인 기습(Surprise), 속도(Speed), 화력의 우세 (Superiority of Fire) 모두 갖추고 있었던 것이다. 이것이 후티어 전술의 알파이자 오메가이다. - dc official App
작성자 : 카다뮴고정닉
우주스압 우주의 신비...4탄.jpg
1969년 목격자들의 설명을 바탕으로 작성된 비행접시 목록 프로젝트 블루 북(Project Blue Book)은 미국 공군에서 1947년부터 1969년까지 UFO를 조사한 프로젝트입니다. 관련 기록은 현재 미국 국립문서기록관리청에 보관되어 있으며, 연구 목적으로 열람이 가능합니다. 이 이미지에는 거대한 은하단 MACS J0138.0-2155에 의해 만들어진 먼 은하의 중력 렌즈가 제임스 웹 우주 망원경으로 포착되어 있습니다. 이 은하단의 불균일한 중력장으로 인해 100억 광년 떨어진 MRG-M0138 은하의 왜곡된 다섯 개의 개별 이미지가 만들어졌습니다. 흥미로운 점은 그중 두 이미지에서 초신성이 관측된다는 것입니다. 왜 다섯 개 모두에서 보이지 않을까요? 이는 렌즈로 보이는 은하에서 나오는 빛이 불균일한 중력장에서 여러 다른 경로를 따라 우리에게 도달하기 때문입니다. 빛은 동시에 도착하지 않으며, 그 지연 시간은 몇 주, 몇 달, 심지어 몇 년에 달할 수 있습니다. 은하의 한 이미지에서는 초신성이 아직 폭발하지 않았을 수 있고, 다른 이미지에서는 이미 사라졌을 수도 있습니다. 이러한 현상을 관찰하는 것은 초기 우주에 대한 많은 정보를 제공합니다. 안타깝게도 렌즈로 보이는 초신성의 여러 이미지는 매우 드뭅니다. JWST 이미지 제공: NASA, ESA, CSA, STScI 백조자리에 위치한 방출 성운 Sh2-114는 비공식적으로 "나는 용"이라고 불립니다. 하지만 그 위협적인 이름과는 달리 꽤 희미한 천체라서 사진으로 담기가 쉽지 않습니다. 제공: Luca Bartek (astrobin) 황소자리에 있는 작은 반사 성운 IC 2087입니다. 이 빽빽한 가스와 먼지 구름은 주변 별빛에 의해 비춰지기 때문에만 보입니다. IC 2087까지의 거리는 약 430광년으로 추정됩니다. 제공: Nik Szymanek (astrobin) 제임스 웹 우주 망원경으로 촬영한 반지 성운 반지 성운은 한때 태양과 비슷했던 별의 죽음으로 인해 형성되었습니다. 내부의 수소 연료가 고갈된 후, 헬륨을 포함한 핵융합 반응이 시작되었습니다. 별은 팽창하기 시작하여 적색 거성으로 변했습니다. 하지만 이 상태는 영원히 지속될 수 없었습니다. 별의 질량은 더 무거운 원소와의 반응을 통해 존재를 유지하기에 충분하지 않았습니다. 결국, 별은 자신의 대기를 방출했고, 뜨거운 핵만이 남았습니다. 이 핵의 자외선 복사는 방출된 물질을 이온화시켜 우리 눈에 보이게 만들었습니다. 이 단계(행성상 성운이라고 불립니다)는 매우 짧은 기간 동안 지속됩니다. 불과 몇천 년 후면 죽은 별의 핵은 충분한 자외선을 방출하지 못하게 되고, 성운은 더 이상 빛을 내지 않게 됩니다. 그런 다음 핵은 식고 수축하여 백색 왜성으로 변하게 됩니다. 웨이탕 리앙의 시선으로 담아낸 스테판의 오중은하 ✨ 이 이미지는 508mm 구경의 돌-커크햄식 반사굴절 망원경으로 촬영되었습니다. 480만 킬로미터 높이의 별의 해일 MACHO 80.7443.1718 별계는 안정적인 리듬으로 맥동하는 '심장 박동성 별(beating heart stars)' 유형에 속합니다. 하지만 이 별계는 그러한 '심장'의 극단적인 예시입니다. 밝기가 약 20%나 변하는데, 이는 대부분의 유사한 별들보다 200배나 큰 변화입니다. 그래서 '깨진 심장(broken heart)'이라고 불립니다. 천문학자들은 왜 그렇게 급격한 밝기 변화가 일어나는지 밝혀냈습니다. 이 별계는 두 개의 별로 이루어져 있으며, 작은 별이 33일마다 한 번씩 큰 동반성에 가장 가까이 접근할 때, 큰 별의 물질을 뜯어내고 480만 킬로미터 높이의 해일을 일으킵니다 이것이 유일한 효과는 아닙니다. 이 매달 반복되는 중력 댄스는 큰 별을 계란 모양으로 늘리는 동시에 별의 물질을 회전하는 대기 중으로 방출합니다. 바로 이러한 요인들이 지구에서 관측되는 급격한 밝기 변화를 만들어냅니다. 천왕성에 관한 8가지 사실 천왕성은 망원경으로 발견된 최초의 행성으로, 1781년에 발견되었습니다. 처음에는 조지 3세 국왕을 기리기 위해 조지 별(Georgium Sidus)이라고 불렸습니다. 1850년에 이르러서야 고대 그리스 하늘의 신 우라노스의 이름을 따서 행성 이름을 짓기로 결정되었습니다. 천왕성의 하루는 지구 시간으로 17시간이며, 1년은 지구 시간으로 84년과 같습니다. 이 행성은 "얼음 거성"으로 분류됩니다. 작은 암석 핵 위에 많은 양의 얼음이 들어 있습니다. ️천왕성의 대기는 주로 수소와 헬륨으로 이루어져 있으며, 메탄의 존재로 인해 독특한 청록색을 띱니다. 행성 표면의 평균 온도는 -212°C입니다. 천왕성에는 희미한 고리 시스템도 있습니다. 비록 13개에 불과하지만요. 천왕성의 자전축은 공전 궤도면에 대해 93° 기울어져 있습니다. 따라서 옆으로 누워서 회전하는 것처럼 보입니다. 북쪽 하늘의 세페우스자리에 있는 암흑 성운 상어 성운 또는 LDN 1235 ✨ 사진 작가 © Luis alberto Perez. 상대성이론과 GPS는 어떤 관련이 있을까요?️ 상대성이론이 순전히 이론적인 것이라고 생각하셨나요? 그렇지 않습니다! 상대성이론은 여러 번 증명되었으며, 우리는 심지어 매일 그것을 이용하고 있습니다! 아인슈타인의 상대성이론에 따르면 지구 표면과 높은 궤도에서는 시간이 아주 약간 다르게 흐릅니다. 높은 궤도에서는 지구 중력이 약간 더 약하게 작용하기 때문입니다. GPS 위성은 이러한 시간 차이를 고려합니다. 높은 정지 궤도에서 GPS 위성의 시간은 "우리" 시간보다 하루에 3800만 분의 1초나 더 빠르게 흘러갑니다. 그리고 GPS가 정확하게 작동하려면 500억 분의 1초의 정확도가 필요합니다. ⏱️ 만약 시스템이 상대성이론을 고려하지 않는다면, GPS는 하루에 10킬로미터씩이나 오차가 발생하여 완전히 쓸모없게 될 것입니다. 중력 미소 체셔 고양이라는 별명을 가진 은하단의 두 개의 거대한 타원 은하가 중력 렌즈 효과로 인해 호 모양으로 둘러싸여 있습니다. 이들은 우리로부터 약 46억 광년 떨어진 큰곰자리에 위치하고 있습니다. 중력 렌즈 효과는 다른 거대한 물체의 중력 작용으로 인해 멀리 있는 물체에서 오는 전자기파와 빛이 휘어지는 현상입니다 (두 번째 사진). 예를 들어, 이는 멀리 있는 은하의 빛이 암흑 물질이나 은하단과 같은 거대한 물체에 의해 일반 렌즈처럼 굴절되는 것입니다 목성 자외선 사진 자외선으로 목성을 관측하면 우리 눈으로 볼 수 없는 목성의 대기 현상을 자세히 볼 수 있습니다. 예를 들어, * 대적반: 붉게 보이는 대적반은 자외선에서는 어둡게 나타납니다. 이는 높은 고도의 안개 입자가 자외선을 흡수하기 때문입니다. * 극지방 헤이즈: 목성의 극지방에서 보이는 붉고 물결치는 듯한 헤이즈는 자외선을 약간 덜 흡수하여 더 밝게 보입니다. 이는 입자의 크기, 구성 또는 고도의 차이 때문일 수 있습니다. * 대기의 흐름: 자외선 관측은 목성 대기의 역동적인 흐름과 구름 패턴을 연구하는 데 유용합니다. 허블 우주 망원경은 장기간에 걸쳐 자외선으로 목성을 관측하여 대기의 변화를 추적하고 있습니다. * 오로라: 목성의 극지방에서 발생하는 오로라는 자외선 영역에서 더욱 뚜렷하게 관측됩니다. 찬드라 X선 관측소 25주년 기념 NASA 콜라주 공개! NASA는 찬드라 X선 관측소의 25주년을 기념하여 25개의 우주 천체 이미지로 구성된 콜라주를 공개했습니다! 이미지는 가로 5개, 세로 5개의 격자 형태로 배열되어 있습니다. 왼쪽 상단부터 각 행을 따라 나열된 천체는 다음과 같습니다. 게 성운, 오리온 성운, 눈 은하, 고양이 발 성운, 우리 은하 중심, M16, 박쥐 그림자 성운, NGC 7469, 처녀자리 은하단, WR 124, G21.5-0.9, 센타우루스 A, 카시오페이아 A, NGC 3532, NGC 6872, Hb 5, 아벨 2125, NGC 3324, NGC 1365, MSH 15-52, Arp 220, 목성, NGC 1850, MACS J0035, SN 1987A. 10년간 촬영한 48가지 달의 색조 이것은 10년 동안 촬영된 다양한 보름달 사진들을 합성하여 만든 이미지입니다. 달의 색깔이 미묘하게 다른 이유는 여러 가지 요인 때문입니다. * 대기 조건: 지구 대기의 먼지, 습도, 구름 등의 상태에 따라 달빛이 산란되는 정도가 달라져 달의 색깔이 다르게 보일 수 있습니다. 예를 들어, 대기 중에 먼지가 많으면 달이 붉게 보일 수 있습니다. * 달의 위치: 달이 지평선 근처에 있을 때는 더 많은 대기를 통과하므로 붉거나 주황색으로 보일 가능성이 높습니다. 하늘 높이 떠 있을 때는 더 하얗게 보입니다. * 관측 장비 및 설정: 카메라의 종류, 필터 사용 여부, 노출 설정 등에 따라서도 달의 색깔이 다르게 기록될 수 있습니다. * 달 표면의 특징: 달 표면의 광물 조성에 따라 반사되는 빛의 파장이 약간씩 다를 수 있지만, 이는 육안으로는 거의 구별하기 어렵습니다. 주로 지구 대기의 영향이 더 큽니다. 이 이미지는 이러한 다양한 요인들이 만들어내는 달의 다채로운 모습을 보여줍니다. 혜성이란 무엇일까요?☄️ 혜성은 소행성과 매우 유사하지만, 얼음, 메탄, 암모니아 및 기타 화합물을 더 많이 포함하고 있습니다. 혜성은 태양에 가까워져 녹기 시작하면 코마라고 불리는 흐릿하고 구름 같은 껍질과 꼬리를 형성합니다. 혜성은 기원에 따라 두 가지 다른 곳에서 유래합니다. 주기가 200년 이상인 장주기 혜성은 오르트 구름에서, 주기가 짧은 단주기 혜성은 카이퍼 벨트에서 유래합니다. 가장 오래된 운석 충돌구는 남아프리카 공화국에 있는 브레데포르트 (Vredefort) 충돌구로, 그 나이는 20억 2천 3백만 년입니다! 충돌구의 과학적 명칭인 아스트로블렘의 반지름은 250km에 달하며, 이는 브레데포르트 충돌구를 동종의 지형 중 가장 큰 것 중 하나로 만듭니다. 이 충돌구는 인근 도시 브레데포르트의 이름을 따서 명명되었습니다. 그리고 2005년에는 유네스코 세계 유산 목록에 등재되었습니다. 과학자들이 또 다른 물리학 법칙을 발견한 것 같습니다 뉴욕의 물리학자 및 수학자 팀이 Physical Review Letters 저널에 블랙홀에 최대 속도가 있다는 연구 결과를 발표했습니다. 우선, 과학자들은 충돌을 준비 중인 블랙홀의 실제 관측 속도를 비교했습니다. 그런 다음 빛의 속도의 1/10보다 빠르게 블랙홀이 가속할 수 없다는 것을 수학적으로 확인했습니다. 이 발견이 어디에 활용될지는 아직 불분명하지만, 새로운 물리학 법칙이 매일 발견되는 것은 아닙니다. 럭비공 모양의 왜행성 하우메아 왜행성 하우메아는 태양계 외곽의 카이퍼 벨트에 위치하고 있습니다. 지름이 1212-1491km인 이 천체는 고리 시스템을 가지고 있으며, 매우 빠른 자전 속도 때문에 길쭉한 타원체 모양을 하고 있습니다. 하우메아의 하루는 지구 시간으로 4시간도 채 되지 않습니다. 약 7만 년 전, 다른 별이 태양계를 "방문"했습니다 그 손님은 최근 발견된 희미한 쌍성계인 숄츠별(Scholz's star, WISE J072003.20-084651.2로도 알려져 있음)이었을 가능성이 있습니다. 이 별은 태양계의 가장 외곽 영역인 오르트 구름을 통과했습니다. 과학자들은 숄츠별의 속도와 이동 경로를 분석했습니다. 그 궤적은 약 7만 년 전에 이 별이 약 5만 2천 천문단위, 즉 지구로부터 약 0.8 광년 떨어진 지점을 통과했음을 나타냅니다. 우주적 규모에서 이 거리는 매우 가까운데, 우리의 가장 가까운 이웃 별인 프록시마 센타우루스까지의 거리는 4.2 광년입니다. 숄츠별은 적색 왜성(태양 질량의 약 8%)과 갈색 왜성(태양 질량의 약 6%)으로 이루어진 쌍성계입니다. 이들의 작은 질량 때문에 태양계는 그 근접 통과에도 불구하고 불안정해지지 않았습니다. 울프 크릭 – 호주에 있는 보존 상태가 좋은 운석 충돌구 이 충돌구는 약 30만 년 전에 무게가 약 5,000톤(!)에 달하는 철 운석이 떨어져 형성되었습니다. 충돌구의 지름은 880미터이고, 깊이는 거의 60미터입니다. 번개는 지구에서만 발생하는 현상이 아닙니다.⚡️ 우주 탐사선들은 화성, 목성, 토성을 포함한 태양계의 다른 행성에서도 번개를 관측했습니다. 금성, 천왕성, 해왕성에서도 번개가 발생할 가능성이 있습니다. 번개는 전하를 띤 입자들이 한 곳에서 다른 곳으로 빠르게 이동하는 현상입니다. 지구에서 번개 방전의 원인이 되는 전하 분리는 얼음 결정과 물방울의 충돌 때문입니다. 그렇다면 목성에서는 어떤 일이 벌어질까요? 주노 탐사선이 촬영한 이미지는 목성의 번개 또한 얼음과 물을 포함한 구름에서 발생한다는 이전의 가설을 뒷받침합니다. 이 사진에서는 목성 북극 근처의 거대한 구름 소용돌이 속에서 광학적인 섬광이 포착되었습니다. 꼬리 달린 블랙홀 지난 4월, 천문학자들은 처음으로 초대질량 블랙홀의 그림자와 그로부터 방출되는 제트를 동시에 관측할 수 있는 이미지를 얻었습니다. 대부분의 은하 중심에는 초대질량 블랙홀이 존재합니다. 이 중력 괴물들은 주변 물질을 흡수하는 것으로 더 잘 알려져 있지만, 모은하를 넘어 확장되는 제트 형태로 물질을 방출하기도 합니다. 이번에 얻은 이미지는 블랙홀 근처에서 꼬리처럼 뻗어나오는 제트와 천문학자들이 "그림자"라고 부르는 강착 원반을 보여줍니다. 이 데이터는 전 세계에 위치한 여러 전파 망원경을 사용하여 얻었습니다. 우주 만두 판(Pan)은 토성의 안쪽 위성 중 하나입니다. 이 위성은 약 14시간 만에 토성을 한 바퀴 공전합니다. 이 사진들은 2017년 3월 7일 카시니 탐사선이 위성 표면으로부터 24,572km 떨어진 거리에서 촬영했습니다. 지름 26km의 이 천체가 독특한 모양을 하고 있다는 점은 주목할 만합니다. 과학자들은 왜 이 위성이 둥근 만두처럼 생겼는지 알지 못하지만, 형성 단계에서 방사성 원소를 흡수했기 때문일 수 있다고 추측합니다. 판 내부에 축적된 방사성 원소는 내부를 가열했을 수 있으며, 만약 이 천체가 처음에는 충분히 빠르게 회전했다면, 또 다른 토성의 위성인 이아페투스처럼 "납작한" 모양을 갖게 되었을 수 있습니다. 이 위성은 1990년 보이저 2호 자동 행성 간 탐사선의 사진 분석을 통해 처음으로 연구자들에 의해 발견되었습니다. - dc official App
작성자 : 싱글벙글고정닉
차단하기
설정을 통해 게시물을 걸러서 볼 수 있습니다.
댓글 영역
획득법
① NFT 발행
작성한 게시물을 NFT로 발행하면 일주일 동안 사용할 수 있습니다. (최초 1회)
② NFT 구매
다른 이용자의 NFT를 구매하면 한 달 동안 사용할 수 있습니다. (구매 시마다 갱신)
사용법
디시콘에서지갑연결시 바로 사용 가능합니다.