갤러리 이슈박스, 최근방문 갤러리
연관 갤러리
비트코인 갤러리 타 갤러리(0)
이 갤러리가 연관 갤러리로 추가한 갤러리
0/0
타 갤러리 비트코인 갤러리(0)
이 갤러리를 연관 갤러리로 추가한 갤러리
0/0
개념글 리스트
1/3
- 조선의 궁궐 등 아무거나 고봉밥 고기고기고기
- 뉴비의 r8 도쿄 사진 (스압) 디붕이
- 유재석의 진품명품 대참사 ㅇㅇ
- [망한머리 구조대 미용실형] 개념글 가성비 끝판왕 2만원 짜리 다운펌 미용실형
- 여기사가 오크랑 또♡ -6 하료향
- 그림판에 마우스로 추억의 사진을 디지털
- 싱글벙글 요즘 영국에서 황희찬 근황 ㅇㅇ
- 훌쩍훌쩍 독박육아 ㅇㅇ
- 일일이 다 대조? 바로바로 '삑'…아이돌 팬미팅 '얼굴 패스' 마스널
- 에어부산 항공기 화재, 정체불명 `선반 속 물체 이별의순간
- 싱글벙글 도박에 빠지는 과정…real ㅇㅇ
- 해외여행 다녀온 극단의P 특징.jpg 뽀까칩
- 싱글벙글 다른나라 사람들은 이해하기 힘든 미국문화 ㅇㅇ
- 겨울 스코틀랜드 뚜벅이 여행기 15. 킬커란, Watt Whisky Tulbae
- 안싱글벙글 수능 부정행위 처리 억울하다는 여자…jpg 공치리구
벤 톰슨 stratechery DeepSeek 분석
사건의 발단은 워싱턴이 2023년 중국이 7나노를 만들어내는 것을 보고 과하게 경기를 일으킨 것부터 시작된다. 2023년 9월 화웨이가 SMIC를 통해 만든 7나노가 탑재된 Mate 60 Pro를 발표했을 때, 그 칩을 자세히 들여다보면 놀라운 일은 아니었는데 말이다.이미 그로부터 1년 전, SMIC는 7나노를 만들었었고 타사들도 다 만들 수 있음에도 수율이 안나와서 안만들었을 뿐인 사건인데 말이다. 오히려 놀라웠던건 워싱턴 DC의 반응이었고 그때부터 미국은 칩 판매를 허가기반으로 바꿔버린 것이다. DeepSeek 사건도 이때와 비슷하게 흘러가고 있다.사실 이번 훈련비용 절감 관련한 사실은 R1 모델이 아니라 지난 크리스마스에 공개된 V3 논문에서 드러났었다.https://github.com/deepseek-ai/DeepSeek-V3/blob/main/DeepSeek_V3.pdf그들은 V3모델 이전의 V2에서 DeepSeekMoE, DeepSeekMLA를 소개했었는데, 이 성과가 V3에서부터 나기 시작했다.우선 DeepSeekMoE는 MoE, Mixture of Experts 전문가 혼합이라는 뜻인데 GPT-3.5 같은 모델은 훈련시든 추론시든 어떤 토큰이 모델로 들어오면 전체를 활성화시키는데 반해, MoE는 특정 주제에 맞는 전문가만 활성화시킨다. (**물론 이것이 잘 발동하려면 게이트가 토큰의 종류를 적절히 판별해 알맞는 전문가에 보내도록 해야한다. 사전학습시 Dense 모델처럼 토큰마다 모든 GPU를 사용하지 않으니 Sparse할 것이고 연산량과 GPU타임이 줄 수 밖에 없다. 하지만 최근 트렌드는 거의 모든 훈련모델들이 MoE를 사용하고 있기 때문에 이것 때문에 효율성이 특출나졌다는 것은 불가능한 이야기다.)이어서 DeepSeekMLA는 추론에서의 제한사항을 혁신해주었다. 어마어마한 양의 메모리 사용량을 줄여준 것이다. 기존에는 모델 전체를 메모리에 로드하고 긴 컨텍스트 윈도우의 토큰 모두를 Key, Value 값으로 저장해야했는데 이런식은 Key-Value 값이 기하급수적으로 늘어서 비용이 늘 수 밖에 없는 것이다. 메모리 부담도 매우 커지고. 하지만 MLA, Multi-head latent attention을 통해 key-value 저장을 압축시켜서 추론시 필요한 메모리를 크게 줄였다.여기에 V3에서 통신오버헤드를 줄이는 로드 밸런싱 방식과 훈련단계에서 여러 토큰을 동시에 예측하도록(multi-token prediction)하는 기법이 추가된 것이다. 그 결과 훈련 효율이 크게 향상되어 H800 GPU 타임이 2,788K로 전체 비용이 557.6만 달러가 나온 것이다. (**라마 훈련비용에 비해 3%)Q: 그건 아무리 봐도 너무 낮은 것 아닌가? A: 최종 훈련단계에서의 비용만 계산한 것이다. 그외 모든 비용은 제외시킨 것이다. V3 논문 자체에도 이런 표현이 명시되어 있다.- 모델구조, 알고리즘, 데이터, 사전 연구, 비교실험 등에 사용된 비용은 포함하지 않았다.즉, 이번 DeepSeek 사건을 재현하려면 3%보다 훨씬 더 큰 돈이 든다는 말이다. 하지만 "최종 훈련" 자체만 보면 그 비용은 말이 된다.Q: 알렉산드르 왕이 한 H100 5만개 이야기는 뭔가?A: 아마 그는 Dylan Patel이 2024년 11월에 한 트윗을 본 것이 아닐까 추측한다. 당시 파텔은 DeepSeek이 호퍼 5만개분을 가지고 있을 것이라는 분석을 내놓았다. 사실 H800은 H100에서 메모리 대역폭을 크게 줄인 버전이다. 중요한 점은 DeepSeek은 그 GPU간의 통신에서 제한이 걸렸기 때문에 이런 연구를 시작했고 거기서 성과를 냈다는 것이다. H800 각 칩에서 132개 프로세싱 유닛 중 20개를 통신 전담으로 할당했다는 것은 쿠다로는 불가능하다. PTX라는 저수준 GPU 명령어집합까지 내려가야만 가능한 일이다. 이정도로 미친수준의 최적화까지 집착했다는 것은 오히려 H100이 아니라 H800에서 훈련을 해내겠다는 집념을 보인 셈이다. 또 지금처럼 추론 서비스를 실제 제공하고 있으려면 상당량의 GPU가 확보되어야만 가능한 일이다. 어마어마한 양의 GPU가 필요하다.(**아마 호퍼 5만개 이상은 확보했을 것이라는 추측이며 최근 일론 머스크도 여기에 동의했다.)Q: 그럼 칩 규제 위반 아닌가?A: 아니다. H100은 막았어도 H800은 막지 않았기 때문이다. 다들 프론티어 모델을 개발하려면 칩간 대역폭이 중요할 것이라 추측했는데 DeepSeek은 그 한계를 극복하도록 모델 구조와 인프라를 최적화시킨 셈이다. 만약 H100 수출규제가 없었다면 더 쉽게 클러스터를 구축하고 모델을 만들어냈을 것이다.Q: 그럼 V3가 (base에서의) 프론티어 모델이란 말인가?A: 적어도 4o, Sonnet-3.5 와 비빌 수준임은 확실해보이고 라마보다는 훨씬 더 위다. 다만 DeepSeek은 4o, 소넷을 디스틸(distill)해서 훈련용 토큰을 만들어냈을 확률이 아주 높아보인다.Q: 디스틸레이션(distillation)이 뭔가?A: 디스틸레이션은 다른 모델의 이해를 추출하는 방법이다. 선생 모델에서 다양한 입력을 넣고 만들어진 출력으로 학생 모델의 학습에 사용시키는 것이다. 각 연구소들은 이런 디스틸레이션을 명백히 금지하고 있다. 하지만 매우 흔하게, DeepSeek 외에도 수많은 곳에서 다들 하고 있다. 때문에 4o, 소넷급 모델들이 계속해서 나오고 있는 것이다. 솔직히 안했을리가 없다고 생각될 정도로 흔한 방법이다.Q: 그럼 1등 모델들은 불리한 것 아닌가?A: 맞다. 앞서가는 연구소들은 가장자리를 넓히는데에 이런 방식은 사용할 수 없다. 대신에 자사 모델 최적화에는 사용할 수 있는 정도다. 부정적인 면은, 이런식으로 디스틸하게 되면 타 연구소들이 계속해서 무임승차하는 것이 가능해진다는 이야기다. 최첨단 모델을 개발하는데 드는 비용은 오직 프론티어 랩들만이 떠안게 된다. 그 결과, 리딩 엣지(leading edge) 모델들에 어마어마한 돈이 들어서 개발되어도, 금방 디스틸레이션으로 카피해서 들어간 돈이 회수가 어렵게 되는 것이다. 곧바로 상품화되고 흔해지니까 말이다. 바로 이 점이 마이크로소프트와 OpenAI가 점점 더 결별하는 방향으로 나아가는 이유인 것 같다. 1천억 달러를 들여서 최신 모델을 개발해봐야, 금방 감가상각되어 흔해지면 돈을 회수할 수가 없다.Q: 이런 이유로 빅테크 주가가 떨어지고 있는 것인가?A: 장기적으로보면 추론비용이 싸지는 것은 마이크로소프트 같은 기업에 유리하다. 그들은 서비스 제공업자이기 때문이다. 아마존 역시 AWS 때문에 수혜자다.이번 사건으로 가장 큰 수혜를 보는 곳 중 하나는 애플이다. 메모리 요구량이 급격하게 줄면 애플 실리콘 같은 엣지 디바이스에서 추론이 실현 가능해지기 때문이다. 애플은 CPU, GPU, NPU가 모두 통합된 메모리를 공유한다. 즉, 애플의 고사양 칩이 곧바로 소비자용 추론 칩이 될 수 있다.엔1비디아의 게이밍 GPU VRAM은 32GB가 최대치지만 애플의 경우 128GB의 램을 사용할 수 있다.메타도 수혜자다. 그들의 비전에서 가장 큰 걸림돌이 추론 비용이었는데 이게 사전훈련 비용과 마찬가지로 매우 싸진다면 그들의 비전 역시 더욱 실현가능해질 것이다.다만 구글의 경우는 악재다. 하드웨어 요구량이 줄어들기 때문에 그들의 TPU로 누려왔던 이점이 줄어들고 추론비용이 제로에 가까워질수록 새로운 검색서비스 등이 나타나기 때문이다. 물론 구글도 자체비용을 줄일 순 있겠지만 잃는 것이 더 크다.Q: 그럼 왜 주가가 떨어지나A: 내가 말한 건 장기적 비전이고 현재는 R1으로 인한 충격이 수습되기 전이다.Q: R1은 어떤가A: R1은 추론형 모델이다. 이는 openai의 o1 신화를 두 가지 면에서 무너뜨린다. 첫째 존재 자체다. 추론에 오픈ai만의 특별한 비법이 없다는 것이다. 둘째, 가중치를 공개해버렸다는 것이다. 물론 데이터는 숨겼기 때문에 오픈소스라 일컫는 것은 무리가 있지만 말이다. 이제 굳이 OpenAI에 돈을 내지 않고도 원하는 서버나 로컬환경에서 추론모델을 돌릴 수 있게 되었다.사실 deepseek은 이번에 R1과 R1zero를 함께 공개했는데 후자가 더 중요하다고 본다.R1-zero는 인간의 피드백을 완전히 빼버렸다. 순수 RL(강화학습)이다. 이 모델에 문제를 잔뜩 주고 올바른 답을 내면 보상을 주고, 체계적인 사고과정을 보여주면 또 보상을 주는 방식으로 만들었다. 마치 알파고가 이기면 보상을 주는 보상함수를 만들었더니 모델 스스로 인간이 가르치지 않은 방식대로 서로 학습시킨 것 처럼 말이다.이를 보면 The bitter Lesson이 다시 한번 입증된 것 같다. 추론하는 방법을 일일히 가르치는 것이 아니라 충분한 연산자원과 데이터만 주면 알아서 학습한다는 것이다. Q: 그럼 결국 우린 AGI에 더 가까워진 것인가?A: 그렇게 보인다. 소프트뱅크의 마사요시가 왜 마이크로소프트가 아닌 OpenAI에 돈을 댄 것인지도 설명이 된다. 1등에 서면 엄청난 수익이 돌아올 것이라는 믿음이 있는 것이다. (** 곧 모델이 알아서 똑똑해지기 시작할 것이기 때문)Q: 그럼 R1이 선두에 선 것인가?A: 그렇다고 보긴 어렵다. 여러 정황 상 R1은 o1-pro를 디스틸레이션한 것으로 보인다. OpenAI는 이미 o3를 선보였다. DeepSeek은 확실히 효율성에서 선두를 차지했지만 그게 최고의 모델이라는 의미는 아니다.(** 뿐만 아니라 o1-mini도 R1 671B 디스틸에 사용된 정황으로 보이는 케이스도 속속 드러났다. https://x.com/JJitsev/status/1883158764863537336)Q: 그럼 왜 이렇게 다들 호들갑인건가?A: 세 가지 요인 때문이다. 1. 중국은 미국보다 많이 뒤쳐져있다 는 인식이 틀렸기 때문에 사람들이 충격받는 것이다. 중국의 소프트웨어 역량은 매우 높은 수준임이 드러났다.2. V3의 낮은 훈련비용, R1의 낮은 추론 비용 때문이다. 계산상으로는 가능한 수치였기 때문에 NVDA에 대한 우려가 커진 것이다.3. DeepSeek이 칩 규제라는 벽을 뚫고 이 성과를 이뤄냈기 때문이다. 현재까지는 어쨌든 합법적으로 구한 H800으로 훈련한 것으로 보이긴 하지만 허점이 많다.Q: 난 NVDA 갖고 있는데 망한건가?A: NVDA 해자가 2개 있었다.1. 쿠다2. 여러 GPU를 하나로 묶어 가상의 거대한 GPU로 만들어내는 기술 - 이 능력은 그 회사만의 독보적인 영역이었다.이 둘은 서로를 더욱 강화시켜주는 것이었는데 약한 하드웨어와 낮은 대역폭으로도 극단적인 최적화가 가능하다는 것이 증명되었기 때문에 NVDA는 새로운 스토리들이 더 필요하게 되었다.다만 아직 유리한 점이 3가지 있다.1. DeepSeek의 접근방식을 오히려 H100이나 GB100 같은 최신식 칩에 사용하게 된다면 얼마나 더 강력해질까? 더 효율적인 컴퓨팅이 가능해진다 하더라도 더 많은 컴퓨팅은 여전히 유효하다.2. 추론 비용이 낮아지면 -> 오히려 모델 사용량이 더 늘어나는 측면이 있다.(** 사티아 나델라는 간밤에 제본스의 역설을 언급하며 AI가 점점 더 싸지고 접근가능성이 높아진다면 사용량이 더 크게 오를 것이라고 언질을 주었다.)(** 제본스의 역설이란 단일 비용이 A에서 B로 싸진다면 사용량이 C에서 D로 늘어나기 때문에 전체 사용량은 오히려 늘어남을 지적하는 것이다.)3. R1이나 o1같은 추론모델들은 더 많은 컴퓨팅을 사용할수록 더 똑똑해진다. 인공지능의 성능을 높이는 방법이 여전히 컴퓨팅에 달려있다면 여전히 NVDA가 수혜를 볼 가능성이 있다.하지만 장밋빛 전망만 있는 것은 아니다.DeepSeek의 효율성과 오픈웨이트로 인한 광범위한 공개는 NVDA의 단기적인 낙관적 성공스토리에 물음표를 달아버렸다.특히. 추론단계에서는 NVDA 칩 외에도 다른 대안 시나리오가 작동하기 시작했다.예를 들어 AMD 칩 하나로도 추론이 가능해진다면 칩간 대역폭이 낮다는 AMD 측의 단점을 상쇄할 수 있게 된다.추론 전용칩이 각광을 받을 수도 있다.요약하자면 NVDA가 사라지진 않을 것이다. 다만 지금까지 고려되지 않았던 불확실성에 노출되었고 이는 하방압력을 키울 수 밖에 없다.Q: 칩 규제는 어떻게 되는건가?A: 칩규제가 더 중요해졌다고 주장할 수도 있겠지만. 2023년의 백악관의 규제가 DeepSeek을 부추긴 것이라고도 볼 수 있기 때문에 단기적으로는 효과가 있더라도 장기적으로는 의문이다.Q: 그럼 왜 중국은 오픈소스를 하는건가?A: 중국이 아니라 DeepSeek이 그렇게 하는거다. CEO 량원펑은 오픈소스야말로 인재를 끌어들이는 핵심이라고 언급했다. Q: 그럼 OpenAI는 망한건가?A: 그렇다고 볼 순 없다. 결국은 AI Take-off에 가장 먼저 도달한 자가 승리한다. 반면 이번 주말의 가장 큰 패배자는 앤트로픽이다. DeepSeek이 앱스토어 1위를 차지하기까지 샌프란시스코 지역 외에서 클로드는 주목조차 끌지 못했다. API가 그나마 잘돌아간다고 어필하지만, DeepSeek 같은 방식대로 디스틸로 프론티어모델이 흔하게 퍼져버리면 가장 먼저 무너지는 쪽이 이 API 비즈니스다. 돈주고 API 쓰느니 성능이 비슷하다면 DeepSeek 같은 오픈웨이트 모델을 쓰기 때문이다.결국 가장 큰 수혜자는 소비자와 기업들이다. 이런 미래는 사실상 무료에 가까운 AI 제품과 서비스를 누릴 수 있게 될 것이기 때문이다. 중국은 이제 자신감이 점점 더 커질 것이다.미국은 선택의 기로에 놓여있다. 더 강경하게 나아갈 것인가, 아니면 더 큰 혁신으로 나아갈 것인가. 연구소들이 이제 로비에 신경쓰지 않고 혁신에만 집중하게된다면, 우린 DeepSeek에게 감사하게 될지도 모른다.
작성자 : KurisuMakise고정닉
故 오요안나 KBS 특보
- 관련게시물 : MBC 요오안나 사태 입장문참 안타까운 일 입니다.부디 위에서는 행복하세요.- dc official App- 오요안나 가해자 심리상태 ㅋㅋㅋㅋㅋ 한줄요약나도 힘드니까 나한테 지랄하지마 병신아- 오요안나 안면골절+치아 부러짐ㄷㄷmbc는 사람 줘패는 곳이구나 ㄷㄷ- 오요안나사건 MBC입장문 분석한 GPT야 아직까지는 GPT다 ㅋㅋㅋ 심층분석뭐냐 ㅋㅋㅋㅋㅋ국내주 ㅡ 한전 주가 목표주가 올라설지 미지수- (속보) 국민의힘 MBC와 전쟁 선포 ㄷㄷㄷㄷ.jpg자... 드가자 - mbc 기상캐스터 사건 엑스에서 불타는 중https://x.com/lucifer5670/status/1883704752296571086?t=D7WL7QUjdZVGHjXR7dC9hw&s=19 루시퍼님(@lucifer5670)작년에 사망한 오요안나라는 캐스터 오씨가 극단적 선택을 한건 작년 9월 15일유가족측은 오씨의 핸드폰 비빌번호를 풀었는데 거기에 대량의 유서와 메시지, 그리고 녹음파일이 발견됨오씨는 사망 전 MBC 관계자 4명에게 사내 괴롭힘을 알렸지만 문제 제기는 되지 않았고 MBC측은 사내 괴롭힘… x.com엑스 계정 있으면 지원사격해줘 더 퍼뜨리자 억울한 죽음이 되지 않도록 - 故 오요안나 ‘직장 내 괴롭힘 사건’, 경찰과 고용노동부에 고발했다.평소 연예인, 정치인들의 비위 행위나 사회 전반의 부정부패에 대해 국민신문고를 통해 수사 기관에 고발하거나, 행정기관 및 지자체에 진정을 제기하는 시민이다.故 오요안나 씨 ‘직장 내 괴롭힘 사건’과 관련해, 28일 경찰과 고용노동부에 각각 고발했다는 사실을 알린다.https://n.news.naver.com/mnews/article/088/0000928177 오요안나 직장 내 괴롭힘 피해 호소 담긴 유서 나와 지난해 9월15일 MBC 기상캐스터 오요안나 씨가 사망했다. 유족들은 사망 당시 사인을 알리지 않았지만 뒤늦게 오 씨가 스스로 목숨을 끊었다고 밝혔다. 비밀번호가 풀린 오 씨 휴대전화에서 유서가 발견됐기 때문이다. n.news.naver.comhttps://n.news.naver.com/mnews/article/421/0008045610 "선배가 네 친구야?" 故오요안나 괴롭힘 추정 인물과 녹취 공개 28세의 일기로 세상을 떠난 MBC 기상캐스터 오요안나의 사인이 뒤늦게 공개된 가운데, 직장 내 괴롭힘 가해자로 지목된 인물과 나눈 메시지와 통화 녹취가 공개돼 파장이 일고 있다. 지난해 9월 15일 오전 1시 5분n.news.naver.comhttps://n.news.naver.com/mnews/article/056/0011882817 ‘MBC 직장 내 괴롭힘 의혹’ 故 오요안나 생전 기록 공개…민사소송 제기 문화방송 MBC에서 기상 캐스터로 근무하던 고(故) 오요안나 씨가 생전에 남긴 기록이 공개됐습니다. 유족 측은 고인과 함께 근무하던 직원을 상대로 민사소송도 제기했습니다. 추재훈 기자입니다. [리포트] n.news.naver.com< 국민신문고 민원신청 >< 보도자료 >故 오요안나 씨 직장 내 괴롭힘 사건: 철저한 수사와 엄중 처벌 촉구2025년 1월 28일, 본 고발인은 故 오요안나 씨 직장 내 괴롭힘 사건과 관련하여 서울마포경찰서와 고용노동부에 고발장을 제출했습니다.고발인은 윤석열 대통령 1차 체포영장 집행 기한 만료일인 지난 6일, ‘112 문자신고’를 통해 “경찰특공대가 헬기를 투입해 대통령 관저로 진입하도록 조치할 것을 촉구합니다”라는 내용을 신고(링크)한 바 있습니다. MBC가 보도자료에서 언급한 “MBC 흔들기 차원에서 접근하는 세력들의 준동”이라는 주장과 무관하며, 고발인의 중립적 입장을 밝히기 위해 이를 명확히 언급합니다.27일 매일신문 보도에 따르면, 故 오요안나 씨(이하 ‘고인’)는 MBC 소속 기상캐스터로 재직 중 동료 기상캐스터 2명으로부터 지속적인 직장 내 괴롭힘을 당한 것으로 드러났습니다. 고인은 동료 기상캐스터의 실수에도 불구하고 그 책임을 전가받는 상황을 겪었으며, 퇴근 후 회사로 부당하게 호출당하는 등 정신적 고통을 겪었습니다. 이러한 괴롭힘은 반복적으로 발생한 것으로 추정됩니다.고인은 MBC 관계자 4명에게 피해 사실을 알렸다는 정황이 있으며, 유족 측이 공개한 증거(대화 내용, 녹취록, 유서 등)를 통해 고인의 피해 호소와 관련된 구체적 정황이 확인되고 있습니다. 그러나, MBC는 “고인이 자신의 고충을 담당부서(경영지원국 인사팀 인사상담실, 감사국 클린센터)나 함께 일했던 관리 책임자들에 알린 적이 전혀 없었다”는 입장을 밝히며, 사건 발생 후에도 적절한 조치를 취하지 않았습니다.MBC의 해명과 고인이 관계자들에게 피해 사실을 알렸다는 정황이 충돌하는 만큼, 이는 ‘조직 내 보고 체계’가 제대로 작동하지 않았거나 ‘신고 과정’에서 문제가 있었을 가능성을 시사합니다.① 법적 문제: 사용자의 조사 의무와 MBC의 소극적 태도「근로기준법」 제76조의3(직장 내 괴롭힘 발생 시 조치)에 따르면, 사용자는 직장 내 괴롭힘 발생 사실에 대해 신고를 접수거나 인지한 경우, 이를 지체 없이 객관적이고 공정하게 조사하여야 할 의무가 있습니다. 이는 피해자가 요청하지 않더라도, 사용자 스스로 직장 내 괴롭힘 여부를 확인하고 필요한 보호 조치를 이행해야 함을 명시하고 있습니다.MBC는 “유족들께서 새로 발견됐다는 유서를 기초로 사실관계 확인을 요청한다면, MBC는 최단시간 안에 진상조사에 착수할 준비가 돼 있다”는 태도를 보였으나, 해당 법 조항에 비추어 볼 때 이는 사용자로서의 조사 의무를 방기한 것으로 평가될 여지가 있습니다. 이는 MBC가 직장 내 괴롭힘 발생에 대한 법적 의무를 충분히 이행하지 않았음을 시사하는 부분으로 볼 수 있습니다.② 고발 내용: 피고발인 1~3의 책임고발인은 고발장에서 MBC 조직과 책임자를 포함한 피고발인 3인에 대해 각각 다음과 같이 책임을 적시했습니다.가. 피고발인 1(MBC)∙ 직장 내 괴롭힘 신고 방치 및 조사 의무 불이행: MBC는 직장 내 괴롭힘 신고를 접수했음에도 이를 방관하거나 조사하지 않았다는 의혹을 받고 있습니다. 특히, 신고가 전달되지 않았다면 이는 ‘조직 내 보고 체계의 실패’를 의미하며, ‘피해자 보호 조치’가 제대로 이루어지지 않은 점은 「근로기준법」 제76조의3(직장 내 괴롭힘 발생 시 조치 의무)을 위반한 것으로 볼 여지가 있습니다.∙ 업무상과실치사 가능성: MBC는 고인의 극단적 선택에 간접적으로 영향을 미친 업무상 ‘안전배려의무’를 방기했다는 의혹이 제기된 점에서 「형법」 제268조(업무상과실ㆍ중과실 치사상) 적용 가능성이 있습니다.나. 피고발인 2(부서 책임자)∙ 괴롭힘 인지 후 방관 의혹: 부서 책임자는 고인의 괴롭힘 피해를 인지하고도 이를 방관하거나 적절한 조치를 취하지 않았다는 의혹이 제기되고 있습니다. 관리자로서의 안전 배려 의무를 다하지 않은 행위는 「근로기준법」 및 「형법」 상 책임을 물을 소지가 있습니다.∙ 관리자의 보고 의무: 관리자가 피해 사실을 인지하고도 보고하지 않았을 경우, 이는 조직적 방치로 이어질 수 있으며, 이러한 부주의는 사후 조치의 부재로 직결됩니다.다. 피고발인 3(동료 기상캐스터 2명)∙ 지속적 괴롭힘 행위: 고인은 동료 기상캐스터들로부터 지속적인 괴롭힘을 받았다는 정황이 확인되었습니다. 구체적으로, 업무 실수 책임 전가, 퇴근 후 호출, 반복적 지적 등은 명백한 직장 내 괴롭힘 행위로 평가되며, 이는 「근로기준법」 제76조의2(직장 내 괴롭힘 금지) 위반에 해당할 가능성이 높습니다.③ 사건의 중요성과 사회적 의미이번 사건은 직장 내 괴롭힘 예방 및 사용자의 법적·사회적 책임을 환기시키는 중요한 계기가 될 것입니다. MBC는 과거 직장 내 괴롭힘 사건에 대해 비판적 보도를 통해 공영방송으로서의 책임을 강조해왔습니다. 그러나 내부 문제에서는 조사와 보호 조치를 소홀히 한 점이 드러나, 공영방송으로서의 신뢰에 중대한 타격을 입혔습니다.이에 고발인은 “고인의 억울함을 풀고, 유사 사건이 재발하지 않도록 철저한 수사와 엄중한 처벌을 통해 정의를 실현해 달라”는 취지로 경찰과 고용노동부의 적극적인 협력을 요청했습니다.④ 결론이번 사건은 단순히 한 개인의 억울함이 아닌, ‘직장 내 괴롭힘’ 문제와 관련하여 사용자의 ‘법적 책임’과 ‘의무 이행 여부’를 점검하는 중요한 계기가 되어야 합니다.MBC는 「근로기준법」 제76조의3에 따라 직장 내 괴롭힘 신고에 대해 즉각적이고 철저한 조사 및 피해자 보호 조치를 이행할 법적 의무가 있습니다. 그러나 이번 사건에서는 이러한 의무가 충분히 이행되지 않았다는 의혹이 제기되고 있어, ‘조직 내 대응 체계’와 ‘법적 절차 준수 여부’에 대한 면밀한 검토가 필요합니다.이에 고발인은 경찰과 고용노동부가 긴밀히 협력하여 사건의 진상을 규명하고, 직장 내 괴롭힘 문제에 대한 법적 책임을 명확히 규정해줄 것을 요청합니다. 나아가, 유사 사건의 재발을 방지하기 위한 법적·제도적 개선을 마련하여 피해자 보호와 직장 내 괴롭힘 예방 체계를 실질적으로 강화하는 계기가 되어야 합니다.
작성자 : ㅇㅇ고정닉
차단하기
설정을 통해 게시물을 걸러서 볼 수 있습니다.
댓글 영역
획득법
① NFT 발행
작성한 게시물을 NFT로 발행하면 일주일 동안 사용할 수 있습니다. (최초 1회)
② NFT 구매
다른 이용자의 NFT를 구매하면 한 달 동안 사용할 수 있습니다. (구매 시마다 갱신)
사용법
디시콘에서지갑연결시 바로 사용 가능합니다.